Metamath Proof Explorer


Theorem add12

Description: Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by NM, 11-May-2004)

Ref Expression
Assertion add12 A B C A + B + C = B + A + C

Proof

Step Hyp Ref Expression
1 addcom A B A + B = B + A
2 1 oveq1d A B A + B + C = B + A + C
3 2 3adant3 A B C A + B + C = B + A + C
4 addass A B C A + B + C = A + B + C
5 addass B A C B + A + C = B + A + C
6 5 3com12 A B C B + A + C = B + A + C
7 3 4 6 3eqtr3d A B C A + B + C = B + A + C