Metamath Proof Explorer


Theorem add12d

Description: Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses addd.1 φ A
addd.2 φ B
addd.3 φ C
Assertion add12d φ A + B + C = B + A + C

Proof

Step Hyp Ref Expression
1 addd.1 φ A
2 addd.2 φ B
3 addd.3 φ C
4 add12 A B C A + B + C = B + A + C
5 1 2 3 4 syl3anc φ A + B + C = B + A + C