Metamath Proof Explorer
Description: Commutative/associative law that swaps the first two terms in a triple
sum. (Contributed by NM, 21-Jan-1997)
|
|
Ref |
Expression |
|
Hypotheses |
add.1 |
|
|
|
add.2 |
|
|
|
add.3 |
|
|
Assertion |
add12i |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
add.1 |
|
2 |
|
add.2 |
|
3 |
|
add.3 |
|
4 |
|
add12 |
|
5 |
1 2 3 4
|
mp3an |
|