Metamath Proof Explorer
Description: Commutative/associative law that swaps the first two terms in a triple
sum. (Contributed by NM, 21-Jan-1997)
|
|
Ref |
Expression |
|
Hypotheses |
add.1 |
|
|
|
add.2 |
|
|
|
add.3 |
|
|
Assertion |
add12i |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
add.1 |
|
| 2 |
|
add.2 |
|
| 3 |
|
add.3 |
|
| 4 |
|
add12 |
|
| 5 |
1 2 3 4
|
mp3an |
|