Metamath Proof Explorer


Theorem add1cncf

Description: Addition to a constant is a continuous function. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses add1cncf.a φ A
add1cncf.f F = x x + A
Assertion add1cncf φ F : cn

Proof

Step Hyp Ref Expression
1 add1cncf.a φ A
2 add1cncf.f F = x x + A
3 ssid
4 cncfmptid x x : cn
5 3 3 4 mp2an x x : cn
6 5 a1i φ x x : cn
7 id A A
8 3 a1i A
9 cncfmptc A x A : cn
10 7 8 8 9 syl3anc A x A : cn
11 1 10 syl φ x A : cn
12 6 11 addcncf φ x x + A : cn
13 2 12 eqeltrid φ F : cn