Database
REAL AND COMPLEX NUMBERS
Integer sets
Simple number properties
add1p1
Next ⟩
sub1m1
Metamath Proof Explorer
Ascii
Unicode
Theorem
add1p1
Description:
Adding two times 1 to a number.
(Contributed by
AV
, 22-Sep-2018)
Ref
Expression
Assertion
add1p1
⊢
N
∈
ℂ
→
N
+
1
+
1
=
N
+
2
Proof
Step
Hyp
Ref
Expression
1
id
⊢
N
∈
ℂ
→
N
∈
ℂ
2
1cnd
⊢
N
∈
ℂ
→
1
∈
ℂ
3
1
2
2
addassd
⊢
N
∈
ℂ
→
N
+
1
+
1
=
N
+
1
+
1
4
1p1e2
⊢
1
+
1
=
2
5
4
a1i
⊢
N
∈
ℂ
→
1
+
1
=
2
6
5
oveq2d
⊢
N
∈
ℂ
→
N
+
1
+
1
=
N
+
2
7
3
6
eqtrd
⊢
N
∈
ℂ
→
N
+
1
+
1
=
N
+
2