Metamath Proof Explorer


Theorem add1p1

Description: Adding two times 1 to a number. (Contributed by AV, 22-Sep-2018)

Ref Expression
Assertion add1p1 N N + 1 + 1 = N + 2

Proof

Step Hyp Ref Expression
1 id N N
2 1cnd N 1
3 1 2 2 addassd N N + 1 + 1 = N + 1 + 1
4 1p1e2 1 + 1 = 2
5 4 a1i N 1 + 1 = 2
6 5 oveq2d N N + 1 + 1 = N + 2
7 3 6 eqtrd N N + 1 + 1 = N + 2