Metamath Proof Explorer


Theorem add2cncf

Description: Addition to a constant is a continuous function. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses add2cncf.a φ A
add2cncf.f F = x A + x
Assertion add2cncf φ F : cn

Proof

Step Hyp Ref Expression
1 add2cncf.a φ A
2 add2cncf.f F = x A + x
3 ssid
4 3 a1i A
5 cncfmptc A x A : cn
6 4 4 5 mpd3an23 A x A : cn
7 1 6 syl φ x A : cn
8 cncfmptid x x : cn
9 3 3 8 mp2an x x : cn
10 9 a1i φ x x : cn
11 7 10 addcncf φ x A + x : cn
12 2 11 eqeltrid φ F : cn