Metamath Proof Explorer


Theorem add32

Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 13-Nov-1999)

Ref Expression
Assertion add32 A B C A + B + C = A + C + B

Proof

Step Hyp Ref Expression
1 addcom B C B + C = C + B
2 1 oveq2d B C A + B + C = A + C + B
3 2 3adant1 A B C A + B + C = A + C + B
4 addass A B C A + B + C = A + B + C
5 addass A C B A + C + B = A + C + B
6 5 3com23 A B C A + C + B = A + C + B
7 3 4 6 3eqtr4d A B C A + B + C = A + C + B