Metamath Proof Explorer


Theorem add32d

Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses addd.1 φ A
addd.2 φ B
addd.3 φ C
Assertion add32d φ A + B + C = A + C + B

Proof

Step Hyp Ref Expression
1 addd.1 φ A
2 addd.2 φ B
3 addd.3 φ C
4 add32 A B C A + B + C = A + C + B
5 1 2 3 4 syl3anc φ A + B + C = A + C + B