Metamath Proof Explorer


Theorem add32i

Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 21-Jan-1997)

Ref Expression
Hypotheses add.1 A
add.2 B
add.3 C
Assertion add32i A + B + C = A + C + B

Proof

Step Hyp Ref Expression
1 add.1 A
2 add.2 B
3 add.3 C
4 add32 A B C A + B + C = A + C + B
5 1 2 3 4 mp3an A + B + C = A + C + B