Metamath Proof Explorer


Theorem add4

Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 13-Nov-1999) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Assertion add4 A B C D A + B + C + D = A + C + B + D

Proof

Step Hyp Ref Expression
1 add12 B C D B + C + D = C + B + D
2 1 3expb B C D B + C + D = C + B + D
3 2 oveq2d B C D A + B + C + D = A + C + B + D
4 3 adantll A B C D A + B + C + D = A + C + B + D
5 addcl C D C + D
6 addass A B C + D A + B + C + D = A + B + C + D
7 6 3expa A B C + D A + B + C + D = A + B + C + D
8 5 7 sylan2 A B C D A + B + C + D = A + B + C + D
9 addcl B D B + D
10 addass A C B + D A + C + B + D = A + C + B + D
11 10 3expa A C B + D A + C + B + D = A + C + B + D
12 9 11 sylan2 A C B D A + C + B + D = A + C + B + D
13 12 an4s A B C D A + C + B + D = A + C + B + D
14 4 8 13 3eqtr4d A B C D A + B + C + D = A + C + B + D