Metamath Proof Explorer


Theorem addassi

Description: Associative law for addition. (Contributed by NM, 23-Nov-1994)

Ref Expression
Hypotheses axi.1 A
axi.2 B
axi.3 C
Assertion addassi A + B + C = A + B + C

Proof

Step Hyp Ref Expression
1 axi.1 A
2 axi.2 B
3 axi.3 C
4 addass A B C A + B + C = A + B + C
5 1 2 3 4 mp3an A + B + C = A + B + C