Metamath Proof Explorer


Theorem addasspr

Description: Addition of positive reals is associative. Proposition 9-3.5(i) of Gleason p. 123. (Contributed by NM, 18-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion addasspr A + 𝑷 B + 𝑷 C = A + 𝑷 B + 𝑷 C

Proof

Step Hyp Ref Expression
1 df-plp + 𝑷 = w 𝑷 , v 𝑷 x | y w z v x = y + 𝑸 z
2 addclnq y 𝑸 z 𝑸 y + 𝑸 z 𝑸
3 dmplp dom + 𝑷 = 𝑷 × 𝑷
4 addclpr f 𝑷 g 𝑷 f + 𝑷 g 𝑷
5 addassnq f + 𝑸 g + 𝑸 h = f + 𝑸 g + 𝑸 h
6 1 2 3 4 5 genpass A + 𝑷 B + 𝑷 C = A + 𝑷 B + 𝑷 C