Metamath Proof Explorer


Theorem addasssr

Description: Addition of signed reals is associative. (Contributed by NM, 2-Sep-1995) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)

Ref Expression
Assertion addasssr A+𝑹B+𝑹C=A+𝑹B+𝑹C

Proof

Step Hyp Ref Expression
1 df-nr 𝑹=𝑷×𝑷/~𝑹
2 addsrpr x𝑷y𝑷z𝑷w𝑷xy~𝑹+𝑹zw~𝑹=x+𝑷zy+𝑷w~𝑹
3 addsrpr z𝑷w𝑷v𝑷u𝑷zw~𝑹+𝑹vu~𝑹=z+𝑷vw+𝑷u~𝑹
4 addsrpr x+𝑷z𝑷y+𝑷w𝑷v𝑷u𝑷x+𝑷zy+𝑷w~𝑹+𝑹vu~𝑹=x+𝑷z+𝑷vy+𝑷w+𝑷u~𝑹
5 addsrpr x𝑷y𝑷z+𝑷v𝑷w+𝑷u𝑷xy~𝑹+𝑹z+𝑷vw+𝑷u~𝑹=x+𝑷z+𝑷vy+𝑷w+𝑷u~𝑹
6 addclpr x𝑷z𝑷x+𝑷z𝑷
7 addclpr y𝑷w𝑷y+𝑷w𝑷
8 6 7 anim12i x𝑷z𝑷y𝑷w𝑷x+𝑷z𝑷y+𝑷w𝑷
9 8 an4s x𝑷y𝑷z𝑷w𝑷x+𝑷z𝑷y+𝑷w𝑷
10 addclpr z𝑷v𝑷z+𝑷v𝑷
11 addclpr w𝑷u𝑷w+𝑷u𝑷
12 10 11 anim12i z𝑷v𝑷w𝑷u𝑷z+𝑷v𝑷w+𝑷u𝑷
13 12 an4s z𝑷w𝑷v𝑷u𝑷z+𝑷v𝑷w+𝑷u𝑷
14 addasspr x+𝑷z+𝑷v=x+𝑷z+𝑷v
15 addasspr y+𝑷w+𝑷u=y+𝑷w+𝑷u
16 1 2 3 4 5 9 13 14 15 ecovass A𝑹B𝑹C𝑹A+𝑹B+𝑹C=A+𝑹B+𝑹C
17 dmaddsr dom+𝑹=𝑹×𝑹
18 0nsr ¬𝑹
19 17 18 ndmovass ¬A𝑹B𝑹C𝑹A+𝑹B+𝑹C=A+𝑹B+𝑹C
20 16 19 pm2.61i A+𝑹B+𝑹C=A+𝑹B+𝑹C