Metamath Proof Explorer


Theorem addasssr

Description: Addition of signed reals is associative. (Contributed by NM, 2-Sep-1995) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)

Ref Expression
Assertion addasssr A + 𝑹 B + 𝑹 C = A + 𝑹 B + 𝑹 C

Proof

Step Hyp Ref Expression
1 df-nr 𝑹 = 𝑷 × 𝑷 / ~ 𝑹
2 addsrpr x 𝑷 y 𝑷 z 𝑷 w 𝑷 x y ~ 𝑹 + 𝑹 z w ~ 𝑹 = x + 𝑷 z y + 𝑷 w ~ 𝑹
3 addsrpr z 𝑷 w 𝑷 v 𝑷 u 𝑷 z w ~ 𝑹 + 𝑹 v u ~ 𝑹 = z + 𝑷 v w + 𝑷 u ~ 𝑹
4 addsrpr x + 𝑷 z 𝑷 y + 𝑷 w 𝑷 v 𝑷 u 𝑷 x + 𝑷 z y + 𝑷 w ~ 𝑹 + 𝑹 v u ~ 𝑹 = x + 𝑷 z + 𝑷 v y + 𝑷 w + 𝑷 u ~ 𝑹
5 addsrpr x 𝑷 y 𝑷 z + 𝑷 v 𝑷 w + 𝑷 u 𝑷 x y ~ 𝑹 + 𝑹 z + 𝑷 v w + 𝑷 u ~ 𝑹 = x + 𝑷 z + 𝑷 v y + 𝑷 w + 𝑷 u ~ 𝑹
6 addclpr x 𝑷 z 𝑷 x + 𝑷 z 𝑷
7 addclpr y 𝑷 w 𝑷 y + 𝑷 w 𝑷
8 6 7 anim12i x 𝑷 z 𝑷 y 𝑷 w 𝑷 x + 𝑷 z 𝑷 y + 𝑷 w 𝑷
9 8 an4s x 𝑷 y 𝑷 z 𝑷 w 𝑷 x + 𝑷 z 𝑷 y + 𝑷 w 𝑷
10 addclpr z 𝑷 v 𝑷 z + 𝑷 v 𝑷
11 addclpr w 𝑷 u 𝑷 w + 𝑷 u 𝑷
12 10 11 anim12i z 𝑷 v 𝑷 w 𝑷 u 𝑷 z + 𝑷 v 𝑷 w + 𝑷 u 𝑷
13 12 an4s z 𝑷 w 𝑷 v 𝑷 u 𝑷 z + 𝑷 v 𝑷 w + 𝑷 u 𝑷
14 addasspr x + 𝑷 z + 𝑷 v = x + 𝑷 z + 𝑷 v
15 addasspr y + 𝑷 w + 𝑷 u = y + 𝑷 w + 𝑷 u
16 1 2 3 4 5 9 13 14 15 ecovass A 𝑹 B 𝑹 C 𝑹 A + 𝑹 B + 𝑹 C = A + 𝑹 B + 𝑹 C
17 dmaddsr dom + 𝑹 = 𝑹 × 𝑹
18 0nsr ¬ 𝑹
19 17 18 ndmovass ¬ A 𝑹 B 𝑹 C 𝑹 A + 𝑹 B + 𝑹 C = A + 𝑹 B + 𝑹 C
20 16 19 pm2.61i A + 𝑹 B + 𝑹 C = A + 𝑹 B + 𝑹 C