Metamath Proof Explorer


Theorem addcan2

Description: Cancellation law for addition. (Contributed by NM, 30-Jul-2004) (Revised by Scott Fenton, 3-Jan-2013)

Ref Expression
Assertion addcan2 A B C A + C = B + C A = B

Proof

Step Hyp Ref Expression
1 cnegex C x C + x = 0
2 1 3ad2ant3 A B C x C + x = 0
3 oveq1 A + C = B + C A + C + x = B + C + x
4 simpl1 A B C x C + x = 0 A
5 simpl3 A B C x C + x = 0 C
6 simprl A B C x C + x = 0 x
7 4 5 6 addassd A B C x C + x = 0 A + C + x = A + C + x
8 simprr A B C x C + x = 0 C + x = 0
9 8 oveq2d A B C x C + x = 0 A + C + x = A + 0
10 addid1 A A + 0 = A
11 4 10 syl A B C x C + x = 0 A + 0 = A
12 7 9 11 3eqtrd A B C x C + x = 0 A + C + x = A
13 simpl2 A B C x C + x = 0 B
14 13 5 6 addassd A B C x C + x = 0 B + C + x = B + C + x
15 8 oveq2d A B C x C + x = 0 B + C + x = B + 0
16 addid1 B B + 0 = B
17 13 16 syl A B C x C + x = 0 B + 0 = B
18 14 15 17 3eqtrd A B C x C + x = 0 B + C + x = B
19 12 18 eqeq12d A B C x C + x = 0 A + C + x = B + C + x A = B
20 3 19 syl5ib A B C x C + x = 0 A + C = B + C A = B
21 oveq1 A = B A + C = B + C
22 20 21 impbid1 A B C x C + x = 0 A + C = B + C A = B
23 2 22 rexlimddv A B C A + C = B + C A = B