Metamath Proof Explorer


Theorem addcan2ad

Description: Cancelling a term on the right-hand side of a sum in an equality. Consequence of addcan2d . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses muld.1 φ A
addcomd.2 φ B
addcand.3 φ C
addcan2ad.4 φ A + C = B + C
Assertion addcan2ad φ A = B

Proof

Step Hyp Ref Expression
1 muld.1 φ A
2 addcomd.2 φ B
3 addcand.3 φ C
4 addcan2ad.4 φ A + C = B + C
5 1 2 3 addcan2d φ A + C = B + C A = B
6 4 5 mpbid φ A = B