Metamath Proof Explorer


Theorem addcanad

Description: Cancelling a term on the left-hand side of a sum in an equality. Consequence of addcand . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses muld.1 φ A
addcomd.2 φ B
addcand.3 φ C
addcanad.4 φ A + B = A + C
Assertion addcanad φ B = C

Proof

Step Hyp Ref Expression
1 muld.1 φ A
2 addcomd.2 φ B
3 addcand.3 φ C
4 addcanad.4 φ A + B = A + C
5 1 2 3 addcand φ A + B = A + C B = C
6 4 5 mpbid φ B = C