Metamath Proof Explorer


Theorem addclnq

Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995) (Revised by Mario Carneiro, 8-May-2013) (New usage is discouraged.)

Ref Expression
Assertion addclnq A 𝑸 B 𝑸 A + 𝑸 B 𝑸

Proof

Step Hyp Ref Expression
1 addpqnq A 𝑸 B 𝑸 A + 𝑸 B = / 𝑸 A + 𝑝𝑸 B
2 elpqn A 𝑸 A 𝑵 × 𝑵
3 elpqn B 𝑸 B 𝑵 × 𝑵
4 addpqf + 𝑝𝑸 : 𝑵 × 𝑵 × 𝑵 × 𝑵 𝑵 × 𝑵
5 4 fovcl A 𝑵 × 𝑵 B 𝑵 × 𝑵 A + 𝑝𝑸 B 𝑵 × 𝑵
6 2 3 5 syl2an A 𝑸 B 𝑸 A + 𝑝𝑸 B 𝑵 × 𝑵
7 nqercl A + 𝑝𝑸 B 𝑵 × 𝑵 / 𝑸 A + 𝑝𝑸 B 𝑸
8 6 7 syl A 𝑸 B 𝑸 / 𝑸 A + 𝑝𝑸 B 𝑸
9 1 8 eqeltrd A 𝑸 B 𝑸 A + 𝑸 B 𝑸