Metamath Proof Explorer


Theorem addclpi

Description: Closure of addition of positive integers. (Contributed by NM, 18-Oct-1995) (New usage is discouraged.)

Ref Expression
Assertion addclpi A 𝑵 B 𝑵 A + 𝑵 B 𝑵

Proof

Step Hyp Ref Expression
1 addpiord A 𝑵 B 𝑵 A + 𝑵 B = A + 𝑜 B
2 pinn A 𝑵 A ω
3 pinn B 𝑵 B ω
4 nnacl A ω B ω A + 𝑜 B ω
5 3 4 sylan2 A ω B 𝑵 A + 𝑜 B ω
6 elni2 B 𝑵 B ω B
7 nnaordi B ω A ω B A + 𝑜 A + 𝑜 B
8 ne0i A + 𝑜 A + 𝑜 B A + 𝑜 B
9 7 8 syl6 B ω A ω B A + 𝑜 B
10 9 expcom A ω B ω B A + 𝑜 B
11 10 imp32 A ω B ω B A + 𝑜 B
12 6 11 sylan2b A ω B 𝑵 A + 𝑜 B
13 elni A + 𝑜 B 𝑵 A + 𝑜 B ω A + 𝑜 B
14 5 12 13 sylanbrc A ω B 𝑵 A + 𝑜 B 𝑵
15 2 14 sylan A 𝑵 B 𝑵 A + 𝑜 B 𝑵
16 1 15 eqeltrd A 𝑵 B 𝑵 A + 𝑵 B 𝑵