Metamath Proof Explorer


Theorem addclpr

Description: Closure of addition on positive reals. First statement of Proposition 9-3.5 of Gleason p. 123. (Contributed by NM, 13-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion addclpr A 𝑷 B 𝑷 A + 𝑷 B 𝑷

Proof

Step Hyp Ref Expression
1 df-plp + 𝑷 = w 𝑷 , v 𝑷 x | y w z v x = y + 𝑸 z
2 addclnq y 𝑸 z 𝑸 y + 𝑸 z 𝑸
3 ltanq h 𝑸 f < 𝑸 g h + 𝑸 f < 𝑸 h + 𝑸 g
4 addcomnq x + 𝑸 y = y + 𝑸 x
5 addclprlem2 A 𝑷 g A B 𝑷 h B x 𝑸 x < 𝑸 g + 𝑸 h x A + 𝑷 B
6 1 2 3 4 5 genpcl A 𝑷 B 𝑷 A + 𝑷 B 𝑷