Metamath Proof Explorer


Theorem addcmpblnr

Description: Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995) (New usage is discouraged.)

Ref Expression
Assertion addcmpblnr A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 A + 𝑷 D = B + 𝑷 C F + 𝑷 S = G + 𝑷 R A + 𝑷 F B + 𝑷 G ~ 𝑹 C + 𝑷 R D + 𝑷 S

Proof

Step Hyp Ref Expression
1 oveq12 A + 𝑷 D = B + 𝑷 C F + 𝑷 S = G + 𝑷 R A + 𝑷 D + 𝑷 F + 𝑷 S = B + 𝑷 C + 𝑷 G + 𝑷 R
2 addclpr A 𝑷 F 𝑷 A + 𝑷 F 𝑷
3 addclpr B 𝑷 G 𝑷 B + 𝑷 G 𝑷
4 2 3 anim12i A 𝑷 F 𝑷 B 𝑷 G 𝑷 A + 𝑷 F 𝑷 B + 𝑷 G 𝑷
5 4 an4s A 𝑷 B 𝑷 F 𝑷 G 𝑷 A + 𝑷 F 𝑷 B + 𝑷 G 𝑷
6 addclpr C 𝑷 R 𝑷 C + 𝑷 R 𝑷
7 addclpr D 𝑷 S 𝑷 D + 𝑷 S 𝑷
8 6 7 anim12i C 𝑷 R 𝑷 D 𝑷 S 𝑷 C + 𝑷 R 𝑷 D + 𝑷 S 𝑷
9 8 an4s C 𝑷 D 𝑷 R 𝑷 S 𝑷 C + 𝑷 R 𝑷 D + 𝑷 S 𝑷
10 5 9 anim12i A 𝑷 B 𝑷 F 𝑷 G 𝑷 C 𝑷 D 𝑷 R 𝑷 S 𝑷 A + 𝑷 F 𝑷 B + 𝑷 G 𝑷 C + 𝑷 R 𝑷 D + 𝑷 S 𝑷
11 10 an4s A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 A + 𝑷 F 𝑷 B + 𝑷 G 𝑷 C + 𝑷 R 𝑷 D + 𝑷 S 𝑷
12 enrbreq A + 𝑷 F 𝑷 B + 𝑷 G 𝑷 C + 𝑷 R 𝑷 D + 𝑷 S 𝑷 A + 𝑷 F B + 𝑷 G ~ 𝑹 C + 𝑷 R D + 𝑷 S A + 𝑷 F + 𝑷 D + 𝑷 S = B + 𝑷 G + 𝑷 C + 𝑷 R
13 11 12 syl A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 A + 𝑷 F B + 𝑷 G ~ 𝑹 C + 𝑷 R D + 𝑷 S A + 𝑷 F + 𝑷 D + 𝑷 S = B + 𝑷 G + 𝑷 C + 𝑷 R
14 addcompr F + 𝑷 D = D + 𝑷 F
15 14 oveq1i F + 𝑷 D + 𝑷 S = D + 𝑷 F + 𝑷 S
16 addasspr F + 𝑷 D + 𝑷 S = F + 𝑷 D + 𝑷 S
17 addasspr D + 𝑷 F + 𝑷 S = D + 𝑷 F + 𝑷 S
18 15 16 17 3eqtr3i F + 𝑷 D + 𝑷 S = D + 𝑷 F + 𝑷 S
19 18 oveq2i A + 𝑷 F + 𝑷 D + 𝑷 S = A + 𝑷 D + 𝑷 F + 𝑷 S
20 addasspr A + 𝑷 F + 𝑷 D + 𝑷 S = A + 𝑷 F + 𝑷 D + 𝑷 S
21 addasspr A + 𝑷 D + 𝑷 F + 𝑷 S = A + 𝑷 D + 𝑷 F + 𝑷 S
22 19 20 21 3eqtr4i A + 𝑷 F + 𝑷 D + 𝑷 S = A + 𝑷 D + 𝑷 F + 𝑷 S
23 addcompr G + 𝑷 C = C + 𝑷 G
24 23 oveq1i G + 𝑷 C + 𝑷 R = C + 𝑷 G + 𝑷 R
25 addasspr G + 𝑷 C + 𝑷 R = G + 𝑷 C + 𝑷 R
26 addasspr C + 𝑷 G + 𝑷 R = C + 𝑷 G + 𝑷 R
27 24 25 26 3eqtr3i G + 𝑷 C + 𝑷 R = C + 𝑷 G + 𝑷 R
28 27 oveq2i B + 𝑷 G + 𝑷 C + 𝑷 R = B + 𝑷 C + 𝑷 G + 𝑷 R
29 addasspr B + 𝑷 G + 𝑷 C + 𝑷 R = B + 𝑷 G + 𝑷 C + 𝑷 R
30 addasspr B + 𝑷 C + 𝑷 G + 𝑷 R = B + 𝑷 C + 𝑷 G + 𝑷 R
31 28 29 30 3eqtr4i B + 𝑷 G + 𝑷 C + 𝑷 R = B + 𝑷 C + 𝑷 G + 𝑷 R
32 22 31 eqeq12i A + 𝑷 F + 𝑷 D + 𝑷 S = B + 𝑷 G + 𝑷 C + 𝑷 R A + 𝑷 D + 𝑷 F + 𝑷 S = B + 𝑷 C + 𝑷 G + 𝑷 R
33 13 32 bitrdi A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 A + 𝑷 F B + 𝑷 G ~ 𝑹 C + 𝑷 R D + 𝑷 S A + 𝑷 D + 𝑷 F + 𝑷 S = B + 𝑷 C + 𝑷 G + 𝑷 R
34 1 33 syl5ibr A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 A + 𝑷 D = B + 𝑷 C F + 𝑷 S = G + 𝑷 R A + 𝑷 F B + 𝑷 G ~ 𝑹 C + 𝑷 R D + 𝑷 S