Metamath Proof Explorer


Theorem addcn

Description: Complex number addition is a continuous function. Part of Proposition 14-4.16 of Gleason p. 243. (Contributed by NM, 30-Jul-2007) (Proof shortened by Mario Carneiro, 5-May-2014)

Ref Expression
Hypothesis addcn.j J = TopOpen fld
Assertion addcn + J × t J Cn J

Proof

Step Hyp Ref Expression
1 addcn.j J = TopOpen fld
2 ax-addf + : ×
3 addcn2 a + b c y + z + u v u b < y v c < z u + v - b + c < a
4 1 2 3 addcnlem + J × t J Cn J