Metamath Proof Explorer


Theorem addcncf

Description: The addition of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses addcncf.a φ x X A : X cn
addcncf.b φ x X B : X cn
Assertion addcncf φ x X A + B : X cn

Proof

Step Hyp Ref Expression
1 addcncf.a φ x X A : X cn
2 addcncf.b φ x X B : X cn
3 eqid TopOpen fld = TopOpen fld
4 3 addcn + TopOpen fld × t TopOpen fld Cn TopOpen fld
5 4 a1i φ + TopOpen fld × t TopOpen fld Cn TopOpen fld
6 3 5 1 2 cncfmpt2f φ x X A + B : X cn