Step |
Hyp |
Ref |
Expression |
1 |
|
addcn.j |
|
2 |
|
addcn.2 |
|
3 |
|
addcn.3 |
|
4 |
3
|
3coml |
|
5 |
|
ifcl |
|
6 |
5
|
adantl |
|
7 |
|
simpll1 |
|
8 |
|
simprl |
|
9 |
|
eqid |
|
10 |
9
|
cnmetdval |
|
11 |
|
abssub |
|
12 |
10 11
|
eqtrd |
|
13 |
7 8 12
|
syl2anc |
|
14 |
13
|
breq1d |
|
15 |
8 7
|
subcld |
|
16 |
15
|
abscld |
|
17 |
|
simplrl |
|
18 |
17
|
rpred |
|
19 |
|
simplrr |
|
20 |
19
|
rpred |
|
21 |
|
ltmin |
|
22 |
16 18 20 21
|
syl3anc |
|
23 |
14 22
|
bitrd |
|
24 |
|
simpl |
|
25 |
23 24
|
syl6bi |
|
26 |
|
simpll2 |
|
27 |
|
simprr |
|
28 |
9
|
cnmetdval |
|
29 |
|
abssub |
|
30 |
28 29
|
eqtrd |
|
31 |
26 27 30
|
syl2anc |
|
32 |
31
|
breq1d |
|
33 |
27 26
|
subcld |
|
34 |
33
|
abscld |
|
35 |
|
ltmin |
|
36 |
34 18 20 35
|
syl3anc |
|
37 |
32 36
|
bitrd |
|
38 |
|
simpr |
|
39 |
37 38
|
syl6bi |
|
40 |
25 39
|
anim12d |
|
41 |
2
|
fovcl |
|
42 |
7 26 41
|
syl2anc |
|
43 |
2
|
fovcl |
|
44 |
43
|
adantl |
|
45 |
9
|
cnmetdval |
|
46 |
|
abssub |
|
47 |
45 46
|
eqtrd |
|
48 |
42 44 47
|
syl2anc |
|
49 |
48
|
breq1d |
|
50 |
49
|
biimprd |
|
51 |
40 50
|
imim12d |
|
52 |
51
|
ralimdvva |
|
53 |
|
breq2 |
|
54 |
|
breq2 |
|
55 |
53 54
|
anbi12d |
|
56 |
55
|
imbi1d |
|
57 |
56
|
2ralbidv |
|
58 |
57
|
rspcev |
|
59 |
6 52 58
|
syl6an |
|
60 |
59
|
rexlimdvva |
|
61 |
4 60
|
mpd |
|
62 |
61
|
rgen3 |
|
63 |
|
cnxmet |
|
64 |
1
|
cnfldtopn |
|
65 |
64 64 64
|
txmetcn |
|
66 |
63 63 63 65
|
mp3an |
|
67 |
2 62 66
|
mpbir2an |
|