| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addcn.j |
|
| 2 |
|
addcn.2 |
|
| 3 |
|
addcn.3 |
|
| 4 |
3
|
3coml |
|
| 5 |
|
ifcl |
|
| 6 |
5
|
adantl |
|
| 7 |
|
simpll1 |
|
| 8 |
|
simprl |
|
| 9 |
|
eqid |
|
| 10 |
9
|
cnmetdval |
|
| 11 |
|
abssub |
|
| 12 |
10 11
|
eqtrd |
|
| 13 |
7 8 12
|
syl2anc |
|
| 14 |
13
|
breq1d |
|
| 15 |
8 7
|
subcld |
|
| 16 |
15
|
abscld |
|
| 17 |
|
simplrl |
|
| 18 |
17
|
rpred |
|
| 19 |
|
simplrr |
|
| 20 |
19
|
rpred |
|
| 21 |
|
ltmin |
|
| 22 |
16 18 20 21
|
syl3anc |
|
| 23 |
14 22
|
bitrd |
|
| 24 |
|
simpl |
|
| 25 |
23 24
|
biimtrdi |
|
| 26 |
|
simpll2 |
|
| 27 |
|
simprr |
|
| 28 |
9
|
cnmetdval |
|
| 29 |
|
abssub |
|
| 30 |
28 29
|
eqtrd |
|
| 31 |
26 27 30
|
syl2anc |
|
| 32 |
31
|
breq1d |
|
| 33 |
27 26
|
subcld |
|
| 34 |
33
|
abscld |
|
| 35 |
|
ltmin |
|
| 36 |
34 18 20 35
|
syl3anc |
|
| 37 |
32 36
|
bitrd |
|
| 38 |
|
simpr |
|
| 39 |
37 38
|
biimtrdi |
|
| 40 |
25 39
|
anim12d |
|
| 41 |
2
|
fovcl |
|
| 42 |
7 26 41
|
syl2anc |
|
| 43 |
2
|
fovcl |
|
| 44 |
43
|
adantl |
|
| 45 |
9
|
cnmetdval |
|
| 46 |
|
abssub |
|
| 47 |
45 46
|
eqtrd |
|
| 48 |
42 44 47
|
syl2anc |
|
| 49 |
48
|
breq1d |
|
| 50 |
49
|
biimprd |
|
| 51 |
40 50
|
imim12d |
|
| 52 |
51
|
ralimdvva |
|
| 53 |
|
breq2 |
|
| 54 |
|
breq2 |
|
| 55 |
53 54
|
anbi12d |
|
| 56 |
55
|
imbi1d |
|
| 57 |
56
|
2ralbidv |
|
| 58 |
57
|
rspcev |
|
| 59 |
6 52 58
|
syl6an |
|
| 60 |
59
|
rexlimdvva |
|
| 61 |
4 60
|
mpd |
|
| 62 |
61
|
rgen3 |
|
| 63 |
|
cnxmet |
|
| 64 |
1
|
cnfldtopn |
|
| 65 |
64 64 64
|
txmetcn |
|
| 66 |
63 63 63 65
|
mp3an |
|
| 67 |
2 62 66
|
mpbir2an |
|