Metamath Proof Explorer


Theorem addcnsr

Description: Addition of complex numbers in terms of signed reals. (Contributed by NM, 28-May-1995) (New usage is discouraged.)

Ref Expression
Assertion addcnsr A 𝑹 B 𝑹 C 𝑹 D 𝑹 A B + C D = A + 𝑹 C B + 𝑹 D

Proof

Step Hyp Ref Expression
1 opex A + 𝑹 C B + 𝑹 D V
2 oveq1 w = A w + 𝑹 u = A + 𝑹 u
3 oveq1 v = B v + 𝑹 f = B + 𝑹 f
4 opeq12 w + 𝑹 u = A + 𝑹 u v + 𝑹 f = B + 𝑹 f w + 𝑹 u v + 𝑹 f = A + 𝑹 u B + 𝑹 f
5 2 3 4 syl2an w = A v = B w + 𝑹 u v + 𝑹 f = A + 𝑹 u B + 𝑹 f
6 oveq2 u = C A + 𝑹 u = A + 𝑹 C
7 oveq2 f = D B + 𝑹 f = B + 𝑹 D
8 opeq12 A + 𝑹 u = A + 𝑹 C B + 𝑹 f = B + 𝑹 D A + 𝑹 u B + 𝑹 f = A + 𝑹 C B + 𝑹 D
9 6 7 8 syl2an u = C f = D A + 𝑹 u B + 𝑹 f = A + 𝑹 C B + 𝑹 D
10 5 9 sylan9eq w = A v = B u = C f = D w + 𝑹 u v + 𝑹 f = A + 𝑹 C B + 𝑹 D
11 df-add + = x y z | x y w v u f x = w v y = u f z = w + 𝑹 u v + 𝑹 f
12 df-c = 𝑹 × 𝑹
13 12 eleq2i x x 𝑹 × 𝑹
14 12 eleq2i y y 𝑹 × 𝑹
15 13 14 anbi12i x y x 𝑹 × 𝑹 y 𝑹 × 𝑹
16 15 anbi1i x y w v u f x = w v y = u f z = w + 𝑹 u v + 𝑹 f x 𝑹 × 𝑹 y 𝑹 × 𝑹 w v u f x = w v y = u f z = w + 𝑹 u v + 𝑹 f
17 16 oprabbii x y z | x y w v u f x = w v y = u f z = w + 𝑹 u v + 𝑹 f = x y z | x 𝑹 × 𝑹 y 𝑹 × 𝑹 w v u f x = w v y = u f z = w + 𝑹 u v + 𝑹 f
18 11 17 eqtri + = x y z | x 𝑹 × 𝑹 y 𝑹 × 𝑹 w v u f x = w v y = u f z = w + 𝑹 u v + 𝑹 f
19 1 10 18 ov3 A 𝑹 B 𝑹 C 𝑹 D 𝑹 A B + C D = A + 𝑹 C B + 𝑹 D