Metamath Proof Explorer


Theorem addcnsrec

Description: Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs and mulcnsrec . (Contributed by NM, 13-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion addcnsrec A 𝑹 B 𝑹 C 𝑹 D 𝑹 A B E -1 + C D E -1 = A + 𝑹 C B + 𝑹 D E -1

Proof

Step Hyp Ref Expression
1 addcnsr A 𝑹 B 𝑹 C 𝑹 D 𝑹 A B + C D = A + 𝑹 C B + 𝑹 D
2 opex A B V
3 2 ecid A B E -1 = A B
4 opex C D V
5 4 ecid C D E -1 = C D
6 3 5 oveq12i A B E -1 + C D E -1 = A B + C D
7 opex A + 𝑹 C B + 𝑹 D V
8 7 ecid A + 𝑹 C B + 𝑹 D E -1 = A + 𝑹 C B + 𝑹 D
9 1 6 8 3eqtr4g A 𝑹 B 𝑹 C 𝑹 D 𝑹 A B E -1 + C D E -1 = A + 𝑹 C B + 𝑹 D E -1