Metamath Proof Explorer


Theorem addcomli

Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Hypotheses mul.1 A
mul.2 B
addcomli.2 A + B = C
Assertion addcomli B + A = C

Proof

Step Hyp Ref Expression
1 mul.1 A
2 mul.2 B
3 addcomli.2 A + B = C
4 2 1 addcomi B + A = A + B
5 4 3 eqtri B + A = C