Metamath Proof Explorer


Theorem addcompr

Description: Addition of positive reals is commutative. Proposition 9-3.5(ii) of Gleason p. 123. (Contributed by NM, 19-Nov-1995) (New usage is discouraged.)

Ref Expression
Assertion addcompr A + 𝑷 B = B + 𝑷 A

Proof

Step Hyp Ref Expression
1 plpv A 𝑷 B 𝑷 A + 𝑷 B = x | z A y B x = z + 𝑸 y
2 plpv B 𝑷 A 𝑷 B + 𝑷 A = x | y B z A x = y + 𝑸 z
3 addcomnq y + 𝑸 z = z + 𝑸 y
4 3 eqeq2i x = y + 𝑸 z x = z + 𝑸 y
5 4 2rexbii y B z A x = y + 𝑸 z y B z A x = z + 𝑸 y
6 rexcom y B z A x = z + 𝑸 y z A y B x = z + 𝑸 y
7 5 6 bitri y B z A x = y + 𝑸 z z A y B x = z + 𝑸 y
8 7 abbii x | y B z A x = y + 𝑸 z = x | z A y B x = z + 𝑸 y
9 2 8 eqtrdi B 𝑷 A 𝑷 B + 𝑷 A = x | z A y B x = z + 𝑸 y
10 9 ancoms A 𝑷 B 𝑷 B + 𝑷 A = x | z A y B x = z + 𝑸 y
11 1 10 eqtr4d A 𝑷 B 𝑷 A + 𝑷 B = B + 𝑷 A
12 dmplp dom + 𝑷 = 𝑷 × 𝑷
13 12 ndmovcom ¬ A 𝑷 B 𝑷 A + 𝑷 B = B + 𝑷 A
14 11 13 pm2.61i A + 𝑷 B = B + 𝑷 A