Metamath Proof Explorer


Theorem addcomsr

Description: Addition of signed reals is commutative. (Contributed by NM, 31-Aug-1995) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)

Ref Expression
Assertion addcomsr A + 𝑹 B = B + 𝑹 A

Proof

Step Hyp Ref Expression
1 df-nr 𝑹 = 𝑷 × 𝑷 / ~ 𝑹
2 addsrpr x 𝑷 y 𝑷 z 𝑷 w 𝑷 x y ~ 𝑹 + 𝑹 z w ~ 𝑹 = x + 𝑷 z y + 𝑷 w ~ 𝑹
3 addsrpr z 𝑷 w 𝑷 x 𝑷 y 𝑷 z w ~ 𝑹 + 𝑹 x y ~ 𝑹 = z + 𝑷 x w + 𝑷 y ~ 𝑹
4 addcompr x + 𝑷 z = z + 𝑷 x
5 addcompr y + 𝑷 w = w + 𝑷 y
6 1 2 3 4 5 ecovcom A 𝑹 B 𝑹 A + 𝑹 B = B + 𝑹 A
7 dmaddsr dom + 𝑹 = 𝑹 × 𝑹
8 7 ndmovcom ¬ A 𝑹 B 𝑹 A + 𝑹 B = B + 𝑹 A
9 6 8 pm2.61i A + 𝑹 B = B + 𝑹 A