Metamath Proof Explorer


Theorem addcos

Description: Sum of cosines. (Contributed by Paul Chapman, 12-Oct-2007)

Ref Expression
Assertion addcos A B cos A + cos B = 2 cos A + B 2 cos A B 2

Proof

Step Hyp Ref Expression
1 coscl A cos A
2 coscl B cos B
3 addcom cos A cos B cos A + cos B = cos B + cos A
4 1 2 3 syl2an A B cos A + cos B = cos B + cos A
5 halfaddsub A B A + B 2 + A B 2 = A A + B 2 A B 2 = B
6 5 simprd A B A + B 2 A B 2 = B
7 6 fveq2d A B cos A + B 2 A B 2 = cos B
8 5 simpld A B A + B 2 + A B 2 = A
9 8 fveq2d A B cos A + B 2 + A B 2 = cos A
10 7 9 oveq12d A B cos A + B 2 A B 2 + cos A + B 2 + A B 2 = cos B + cos A
11 halfaddsubcl A B A + B 2 A B 2
12 coscl A + B 2 cos A + B 2
13 coscl A B 2 cos A B 2
14 mulcl cos A + B 2 cos A B 2 cos A + B 2 cos A B 2
15 12 13 14 syl2an A + B 2 A B 2 cos A + B 2 cos A B 2
16 11 15 syl A B cos A + B 2 cos A B 2
17 sincl A + B 2 sin A + B 2
18 sincl A B 2 sin A B 2
19 mulcl sin A + B 2 sin A B 2 sin A + B 2 sin A B 2
20 17 18 19 syl2an A + B 2 A B 2 sin A + B 2 sin A B 2
21 11 20 syl A B sin A + B 2 sin A B 2
22 16 21 16 ppncand A B cos A + B 2 cos A B 2 + sin A + B 2 sin A B 2 + cos A + B 2 cos A B 2 sin A + B 2 sin A B 2 = cos A + B 2 cos A B 2 + cos A + B 2 cos A B 2
23 cossub A + B 2 A B 2 cos A + B 2 A B 2 = cos A + B 2 cos A B 2 + sin A + B 2 sin A B 2
24 cosadd A + B 2 A B 2 cos A + B 2 + A B 2 = cos A + B 2 cos A B 2 sin A + B 2 sin A B 2
25 23 24 oveq12d A + B 2 A B 2 cos A + B 2 A B 2 + cos A + B 2 + A B 2 = cos A + B 2 cos A B 2 + sin A + B 2 sin A B 2 + cos A + B 2 cos A B 2 sin A + B 2 sin A B 2
26 11 25 syl A B cos A + B 2 A B 2 + cos A + B 2 + A B 2 = cos A + B 2 cos A B 2 + sin A + B 2 sin A B 2 + cos A + B 2 cos A B 2 sin A + B 2 sin A B 2
27 16 2timesd A B 2 cos A + B 2 cos A B 2 = cos A + B 2 cos A B 2 + cos A + B 2 cos A B 2
28 22 26 27 3eqtr4d A B cos A + B 2 A B 2 + cos A + B 2 + A B 2 = 2 cos A + B 2 cos A B 2
29 4 10 28 3eqtr2d A B cos A + cos B = 2 cos A + B 2 cos A B 2