Metamath Proof Explorer


Theorem adddir

Description: Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004)

Ref Expression
Assertion adddir A B C A + B C = A C + B C

Proof

Step Hyp Ref Expression
1 adddi C A B C A + B = C A + C B
2 1 3coml A B C C A + B = C A + C B
3 addcl A B A + B
4 mulcom A + B C A + B C = C A + B
5 3 4 stoic3 A B C A + B C = C A + B
6 mulcom A C A C = C A
7 6 3adant2 A B C A C = C A
8 mulcom B C B C = C B
9 8 3adant1 A B C B C = C B
10 7 9 oveq12d A B C A C + B C = C A + C B
11 2 5 10 3eqtr4d A B C A + B C = A C + B C