Metamath Proof Explorer


Theorem adderpqlem

Description: Lemma for adderpq . (Contributed by Mario Carneiro, 8-May-2013) (New usage is discouraged.)

Ref Expression
Assertion adderpqlem A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 A ~ 𝑸 B A + 𝑝𝑸 C ~ 𝑸 B + 𝑝𝑸 C

Proof

Step Hyp Ref Expression
1 xp1st A 𝑵 × 𝑵 1 st A 𝑵
2 1 3ad2ant1 A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 1 st A 𝑵
3 xp2nd C 𝑵 × 𝑵 2 nd C 𝑵
4 3 3ad2ant3 A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 2 nd C 𝑵
5 mulclpi 1 st A 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd C 𝑵
6 2 4 5 syl2anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 1 st A 𝑵 2 nd C 𝑵
7 xp1st C 𝑵 × 𝑵 1 st C 𝑵
8 7 3ad2ant3 A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 1 st C 𝑵
9 xp2nd A 𝑵 × 𝑵 2 nd A 𝑵
10 9 3ad2ant1 A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 2 nd A 𝑵
11 mulclpi 1 st C 𝑵 2 nd A 𝑵 1 st C 𝑵 2 nd A 𝑵
12 8 10 11 syl2anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 1 st C 𝑵 2 nd A 𝑵
13 addclpi 1 st A 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd A 𝑵 1 st A 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd A 𝑵
14 6 12 13 syl2anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 1 st A 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd A 𝑵
15 mulclpi 2 nd A 𝑵 2 nd C 𝑵 2 nd A 𝑵 2 nd C 𝑵
16 10 4 15 syl2anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 2 nd A 𝑵 2 nd C 𝑵
17 xp1st B 𝑵 × 𝑵 1 st B 𝑵
18 17 3ad2ant2 A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 1 st B 𝑵
19 mulclpi 1 st B 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd C 𝑵
20 18 4 19 syl2anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 1 st B 𝑵 2 nd C 𝑵
21 xp2nd B 𝑵 × 𝑵 2 nd B 𝑵
22 21 3ad2ant2 A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 2 nd B 𝑵
23 mulclpi 1 st C 𝑵 2 nd B 𝑵 1 st C 𝑵 2 nd B 𝑵
24 8 22 23 syl2anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 1 st C 𝑵 2 nd B 𝑵
25 addclpi 1 st B 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 𝑵
26 20 24 25 syl2anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 𝑵
27 mulclpi 2 nd B 𝑵 2 nd C 𝑵 2 nd B 𝑵 2 nd C 𝑵
28 22 4 27 syl2anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 2 nd B 𝑵 2 nd C 𝑵
29 enqbreq 1 st A 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd A 𝑵 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 𝑵 2 nd B 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd A 2 nd A 𝑵 2 nd C ~ 𝑸 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 2 nd B 𝑵 2 nd C 1 st A 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd A 𝑵 2 nd B 𝑵 2 nd C = 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B
30 14 16 26 28 29 syl22anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 1 st A 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd A 2 nd A 𝑵 2 nd C ~ 𝑸 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 2 nd B 𝑵 2 nd C 1 st A 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd A 𝑵 2 nd B 𝑵 2 nd C = 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B
31 addpipq2 A 𝑵 × 𝑵 C 𝑵 × 𝑵 A + 𝑝𝑸 C = 1 st A 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd A 2 nd A 𝑵 2 nd C
32 31 3adant2 A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 A + 𝑝𝑸 C = 1 st A 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd A 2 nd A 𝑵 2 nd C
33 addpipq2 B 𝑵 × 𝑵 C 𝑵 × 𝑵 B + 𝑝𝑸 C = 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 2 nd B 𝑵 2 nd C
34 33 3adant1 A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 B + 𝑝𝑸 C = 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 2 nd B 𝑵 2 nd C
35 32 34 breq12d A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 A + 𝑝𝑸 C ~ 𝑸 B + 𝑝𝑸 C 1 st A 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd A 2 nd A 𝑵 2 nd C ~ 𝑸 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B 2 nd B 𝑵 2 nd C
36 enqbreq2 A 𝑵 × 𝑵 B 𝑵 × 𝑵 A ~ 𝑸 B 1 st A 𝑵 2 nd B = 1 st B 𝑵 2 nd A
37 36 3adant3 A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 A ~ 𝑸 B 1 st A 𝑵 2 nd B = 1 st B 𝑵 2 nd A
38 mulclpi 2 nd C 𝑵 2 nd C 𝑵 2 nd C 𝑵 2 nd C 𝑵
39 4 4 38 syl2anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 2 nd C 𝑵 2 nd C 𝑵
40 mulclpi 1 st A 𝑵 2 nd B 𝑵 1 st A 𝑵 2 nd B 𝑵
41 2 22 40 syl2anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 1 st A 𝑵 2 nd B 𝑵
42 mulcanpi 2 nd C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B 𝑵 2 nd C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B = 2 nd C 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd A 1 st A 𝑵 2 nd B = 1 st B 𝑵 2 nd A
43 39 41 42 syl2anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 2 nd C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B = 2 nd C 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd A 1 st A 𝑵 2 nd B = 1 st B 𝑵 2 nd A
44 mulclpi 2 nd A 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B 𝑵 2 nd A 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B 𝑵
45 16 24 44 syl2anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 2 nd A 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B 𝑵
46 mulclpi 2 nd C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B 𝑵 2 nd C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B 𝑵
47 39 41 46 syl2anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 2 nd C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B 𝑵
48 addcanpi 2 nd A 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B 𝑵 2 nd C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B 𝑵 2 nd A 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B + 𝑵 2 nd C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B = 2 nd A 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B + 𝑵 2 nd C 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd A 2 nd C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B = 2 nd C 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd A
49 45 47 48 syl2anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 2 nd A 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B + 𝑵 2 nd C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B = 2 nd A 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B + 𝑵 2 nd C 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd A 2 nd C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B = 2 nd C 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd A
50 mulcompi 2 nd C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B = 1 st A 𝑵 2 nd B 𝑵 2 nd C 𝑵 2 nd C
51 fvex 1 st A V
52 fvex 2 nd B V
53 fvex 2 nd C V
54 mulcompi x 𝑵 y = y 𝑵 x
55 mulasspi x 𝑵 y 𝑵 z = x 𝑵 y 𝑵 z
56 51 52 53 54 55 53 caov4 1 st A 𝑵 2 nd B 𝑵 2 nd C 𝑵 2 nd C = 1 st A 𝑵 2 nd C 𝑵 2 nd B 𝑵 2 nd C
57 50 56 eqtri 2 nd C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B = 1 st A 𝑵 2 nd C 𝑵 2 nd B 𝑵 2 nd C
58 fvex 2 nd A V
59 fvex 1 st C V
60 58 53 59 54 55 52 caov4 2 nd A 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B = 2 nd A 𝑵 1 st C 𝑵 2 nd C 𝑵 2 nd B
61 mulcompi 2 nd A 𝑵 1 st C = 1 st C 𝑵 2 nd A
62 mulcompi 2 nd C 𝑵 2 nd B = 2 nd B 𝑵 2 nd C
63 61 62 oveq12i 2 nd A 𝑵 1 st C 𝑵 2 nd C 𝑵 2 nd B = 1 st C 𝑵 2 nd A 𝑵 2 nd B 𝑵 2 nd C
64 60 63 eqtri 2 nd A 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B = 1 st C 𝑵 2 nd A 𝑵 2 nd B 𝑵 2 nd C
65 57 64 oveq12i 2 nd C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B + 𝑵 2 nd A 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B = 1 st A 𝑵 2 nd C 𝑵 2 nd B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd A 𝑵 2 nd B 𝑵 2 nd C
66 addcompi 2 nd A 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B + 𝑵 2 nd C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B = 2 nd C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B + 𝑵 2 nd A 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B
67 ovex 1 st A 𝑵 2 nd C V
68 ovex 1 st C 𝑵 2 nd A V
69 ovex 2 nd B 𝑵 2 nd C V
70 distrpi x 𝑵 y + 𝑵 z = x 𝑵 y + 𝑵 x 𝑵 z
71 67 68 69 54 70 caovdir 1 st A 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd A 𝑵 2 nd B 𝑵 2 nd C = 1 st A 𝑵 2 nd C 𝑵 2 nd B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd A 𝑵 2 nd B 𝑵 2 nd C
72 65 66 71 3eqtr4i 2 nd A 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B + 𝑵 2 nd C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B = 1 st A 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd A 𝑵 2 nd B 𝑵 2 nd C
73 addcompi 2 nd A 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B + 𝑵 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd C = 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd C + 𝑵 2 nd A 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B
74 mulasspi 2 nd C 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd A = 2 nd C 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd A
75 mulcompi 2 nd C 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd A = 2 nd C 𝑵 1 st B 𝑵 2 nd A 𝑵 2 nd C
76 mulasspi 2 nd A 𝑵 2 nd C 𝑵 1 st B = 2 nd A 𝑵 2 nd C 𝑵 1 st B
77 mulcompi 2 nd A 𝑵 2 nd C 𝑵 1 st B = 2 nd C 𝑵 1 st B 𝑵 2 nd A
78 mulasspi 2 nd C 𝑵 1 st B 𝑵 2 nd A = 2 nd C 𝑵 1 st B 𝑵 2 nd A
79 76 77 78 3eqtrri 2 nd C 𝑵 1 st B 𝑵 2 nd A = 2 nd A 𝑵 2 nd C 𝑵 1 st B
80 79 oveq1i 2 nd C 𝑵 1 st B 𝑵 2 nd A 𝑵 2 nd C = 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd C
81 75 80 eqtri 2 nd C 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd A = 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd C
82 mulasspi 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd C = 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd C
83 81 82 eqtri 2 nd C 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd A = 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd C
84 74 83 eqtri 2 nd C 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd A = 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd C
85 84 oveq2i 2 nd A 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B + 𝑵 2 nd C 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd A = 2 nd A 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B + 𝑵 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd C
86 distrpi 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B = 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd C + 𝑵 2 nd A 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B
87 73 85 86 3eqtr4i 2 nd A 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B + 𝑵 2 nd C 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd A = 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B
88 72 87 eqeq12i 2 nd A 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B + 𝑵 2 nd C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B = 2 nd A 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd B + 𝑵 2 nd C 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd A 1 st A 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd A 𝑵 2 nd B 𝑵 2 nd C = 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B
89 49 88 bitr3di A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 2 nd C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B = 2 nd C 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd A 1 st A 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd A 𝑵 2 nd B 𝑵 2 nd C = 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B
90 37 43 89 3bitr2d A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 A ~ 𝑸 B 1 st A 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd A 𝑵 2 nd B 𝑵 2 nd C = 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd C + 𝑵 1 st C 𝑵 2 nd B
91 30 35 90 3bitr4rd A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 A ~ 𝑸 B A + 𝑝𝑸 C ~ 𝑸 B + 𝑝𝑸 C