Metamath Proof Explorer


Theorem addgegt0d

Description: Addition of nonnegative and positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φ A
ltnegd.2 φ B
addgegt0d.3 φ 0 A
addgegt0d.4 φ 0 < B
Assertion addgegt0d φ 0 < A + B

Proof

Step Hyp Ref Expression
1 leidd.1 φ A
2 ltnegd.2 φ B
3 addgegt0d.3 φ 0 A
4 addgegt0d.4 φ 0 < B
5 addgegt0 A B 0 A 0 < B 0 < A + B
6 1 2 3 4 5 syl22anc φ 0 < A + B