Metamath Proof Explorer


Theorem addgt0d

Description: Addition of 2 positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φ A
ltnegd.2 φ B
addgt0d.3 φ 0 < A
addgt0d.4 φ 0 < B
Assertion addgt0d φ 0 < A + B

Proof

Step Hyp Ref Expression
1 leidd.1 φ A
2 ltnegd.2 φ B
3 addgt0d.3 φ 0 < A
4 addgt0d.4 φ 0 < B
5 0red φ 0
6 5 1 3 ltled φ 0 A
7 1 2 6 4 addgegt0d φ 0 < A + B