Metamath Proof Explorer


Theorem addgt0sr

Description: The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996) (New usage is discouraged.)

Ref Expression
Assertion addgt0sr 0 𝑹 < 𝑹 A 0 𝑹 < 𝑹 B 0 𝑹 < 𝑹 A + 𝑹 B

Proof

Step Hyp Ref Expression
1 ltrelsr < 𝑹 𝑹 × 𝑹
2 1 brel 0 𝑹 < 𝑹 A 0 𝑹 𝑹 A 𝑹
3 ltasr A 𝑹 0 𝑹 < 𝑹 B A + 𝑹 0 𝑹 < 𝑹 A + 𝑹 B
4 0idsr A 𝑹 A + 𝑹 0 𝑹 = A
5 4 breq1d A 𝑹 A + 𝑹 0 𝑹 < 𝑹 A + 𝑹 B A < 𝑹 A + 𝑹 B
6 3 5 bitrd A 𝑹 0 𝑹 < 𝑹 B A < 𝑹 A + 𝑹 B
7 2 6 simpl2im 0 𝑹 < 𝑹 A 0 𝑹 < 𝑹 B A < 𝑹 A + 𝑹 B
8 7 biimpa 0 𝑹 < 𝑹 A 0 𝑹 < 𝑹 B A < 𝑹 A + 𝑹 B
9 ltsosr < 𝑹 Or 𝑹
10 9 1 sotri 0 𝑹 < 𝑹 A A < 𝑹 A + 𝑹 B 0 𝑹 < 𝑹 A + 𝑹 B
11 8 10 syldan 0 𝑹 < 𝑹 A 0 𝑹 < 𝑹 B 0 𝑹 < 𝑹 A + 𝑹 B