Metamath Proof Explorer


Theorem addgtge0d

Description: Addition of positive and nonnegative numbers is positive. (Contributed by Asger C. Ipsen, 12-May-2021)

Ref Expression
Hypotheses leidd.1 φ A
ltnegd.2 φ B
addgtge0d.3 φ 0 < A
addgtge0d.4 φ 0 B
Assertion addgtge0d φ 0 < A + B

Proof

Step Hyp Ref Expression
1 leidd.1 φ A
2 ltnegd.2 φ B
3 addgtge0d.3 φ 0 < A
4 addgtge0d.4 φ 0 B
5 addgtge0 A B 0 < A 0 B 0 < A + B
6 1 2 3 4 5 syl22anc φ 0 < A + B