Metamath Proof Explorer


Theorem addid0

Description: If adding a number to a another number yields the other number, the added number must be 0 . This shows that 0 is the unique (right) identity of the complex numbers. (Contributed by AV, 17-Jan-2021)

Ref Expression
Assertion addid0 X Y X + Y = X Y = 0

Proof

Step Hyp Ref Expression
1 simpl X Y X
2 simpr X Y Y
3 1 1 2 subaddd X Y X X = Y X + Y = X
4 eqcom X X = Y Y = X X
5 simpr X Y = X X Y = X X
6 subid X X X = 0
7 6 adantr X Y = X X X X = 0
8 5 7 eqtrd X Y = X X Y = 0
9 8 ex X Y = X X Y = 0
10 4 9 syl5bi X X X = Y Y = 0
11 10 adantr X Y X X = Y Y = 0
12 3 11 sylbird X Y X + Y = X Y = 0
13 oveq2 Y = 0 X + Y = X + 0
14 addid1 X X + 0 = X
15 13 14 sylan9eqr X Y = 0 X + Y = X
16 15 ex X Y = 0 X + Y = X
17 16 adantr X Y Y = 0 X + Y = X
18 12 17 impbid X Y X + Y = X Y = 0