Metamath Proof Explorer


Theorem addlelt

Description: If the sum of a real number and a positive real number is less than or equal to a third real number, the first real number is less than the third real number. (Contributed by AV, 1-Jul-2021)

Ref Expression
Assertion addlelt M N A + M + A N M < N

Proof

Step Hyp Ref Expression
1 rpgt0 A + 0 < A
2 1 3ad2ant3 M N A + 0 < A
3 rpre A + A
4 3 3ad2ant3 M N A + A
5 simp1 M N A + M
6 4 5 ltaddposd M N A + 0 < A M < M + A
7 2 6 mpbid M N A + M < M + A
8 simpl M A + M
9 3 adantl M A + A
10 8 9 readdcld M A + M + A
11 10 3adant2 M N A + M + A
12 simp2 M N A + N
13 ltletr M M + A N M < M + A M + A N M < N
14 5 11 12 13 syl3anc M N A + M < M + A M + A N M < N
15 7 14 mpand M N A + M + A N M < N