Step |
Hyp |
Ref |
Expression |
1 |
|
addlimc.f |
|
2 |
|
addlimc.g |
|
3 |
|
addlimc.h |
|
4 |
|
addlimc.b |
|
5 |
|
addlimc.c |
|
6 |
|
addlimc.e |
|
7 |
|
addlimc.i |
|
8 |
|
limccl |
|
9 |
8 6
|
sselid |
|
10 |
|
limccl |
|
11 |
10 7
|
sselid |
|
12 |
9 11
|
addcld |
|
13 |
4 1
|
fmptd |
|
14 |
1 4 6
|
limcmptdm |
|
15 |
|
limcrcl |
|
16 |
6 15
|
syl |
|
17 |
16
|
simp3d |
|
18 |
13 14 17
|
ellimc3 |
|
19 |
6 18
|
mpbid |
|
20 |
19
|
simprd |
|
21 |
|
rphalfcl |
|
22 |
|
breq2 |
|
23 |
22
|
imbi2d |
|
24 |
23
|
rexralbidv |
|
25 |
24
|
rspccva |
|
26 |
20 21 25
|
syl2an |
|
27 |
5 2
|
fmptd |
|
28 |
27 14 17
|
ellimc3 |
|
29 |
7 28
|
mpbid |
|
30 |
29
|
simprd |
|
31 |
|
breq2 |
|
32 |
31
|
imbi2d |
|
33 |
32
|
rexralbidv |
|
34 |
33
|
rspccva |
|
35 |
30 21 34
|
syl2an |
|
36 |
|
reeanv |
|
37 |
26 35 36
|
sylanbrc |
|
38 |
|
ifcl |
|
39 |
38
|
3ad2ant2 |
|
40 |
|
nfv |
|
41 |
|
nfv |
|
42 |
|
nfra1 |
|
43 |
|
nfra1 |
|
44 |
42 43
|
nfan |
|
45 |
40 41 44
|
nf3an |
|
46 |
|
simp11l |
|
47 |
|
simp2 |
|
48 |
46 47
|
jca |
|
49 |
|
rpre |
|
50 |
49
|
adantl |
|
51 |
50
|
3ad2ant1 |
|
52 |
51
|
3ad2ant1 |
|
53 |
|
simp13l |
|
54 |
|
simp3l |
|
55 |
14
|
sselda |
|
56 |
46 47 55
|
syl2anc |
|
57 |
46 17
|
syl |
|
58 |
56 57
|
subcld |
|
59 |
58
|
abscld |
|
60 |
39
|
rpred |
|
61 |
60
|
3ad2ant1 |
|
62 |
|
simpl |
|
63 |
62
|
rpred |
|
64 |
63
|
3ad2ant2 |
|
65 |
64
|
3ad2ant1 |
|
66 |
|
simp3r |
|
67 |
|
simpr |
|
68 |
67
|
rpred |
|
69 |
|
min1 |
|
70 |
63 68 69
|
syl2anc |
|
71 |
70
|
3ad2ant2 |
|
72 |
71
|
3ad2ant1 |
|
73 |
59 61 65 66 72
|
ltletrd |
|
74 |
54 73
|
jca |
|
75 |
|
rsp |
|
76 |
53 47 74 75
|
syl3c |
|
77 |
48 52 76
|
jca31 |
|
78 |
|
simp13r |
|
79 |
68
|
3ad2ant2 |
|
80 |
79
|
3ad2ant1 |
|
81 |
|
min2 |
|
82 |
63 68 81
|
syl2anc |
|
83 |
82
|
3ad2ant2 |
|
84 |
83
|
3ad2ant1 |
|
85 |
59 61 80 66 84
|
ltletrd |
|
86 |
54 85
|
jca |
|
87 |
|
rsp |
|
88 |
78 47 86 87
|
syl3c |
|
89 |
4 5
|
addcld |
|
90 |
89 3
|
fmptd |
|
91 |
90
|
ffvelrnda |
|
92 |
91
|
ad3antrrr |
|
93 |
|
simp-4l |
|
94 |
93 12
|
syl |
|
95 |
92 94
|
subcld |
|
96 |
95
|
abscld |
|
97 |
13
|
ffvelrnda |
|
98 |
97
|
ad3antrrr |
|
99 |
93 9
|
syl |
|
100 |
98 99
|
subcld |
|
101 |
100
|
abscld |
|
102 |
27
|
ffvelrnda |
|
103 |
102
|
ad3antrrr |
|
104 |
93 11
|
syl |
|
105 |
103 104
|
subcld |
|
106 |
105
|
abscld |
|
107 |
101 106
|
readdcld |
|
108 |
|
simpllr |
|
109 |
|
nfv |
|
110 |
|
nfmpt1 |
|
111 |
3 110
|
nfcxfr |
|
112 |
|
nfcv |
|
113 |
111 112
|
nffv |
|
114 |
|
nfmpt1 |
|
115 |
1 114
|
nfcxfr |
|
116 |
115 112
|
nffv |
|
117 |
|
nfcv |
|
118 |
|
nfmpt1 |
|
119 |
2 118
|
nfcxfr |
|
120 |
119 112
|
nffv |
|
121 |
116 117 120
|
nfov |
|
122 |
113 121
|
nfeq |
|
123 |
109 122
|
nfim |
|
124 |
|
eleq1w |
|
125 |
124
|
anbi2d |
|
126 |
|
fveq2 |
|
127 |
|
fveq2 |
|
128 |
|
fveq2 |
|
129 |
127 128
|
oveq12d |
|
130 |
126 129
|
eqeq12d |
|
131 |
125 130
|
imbi12d |
|
132 |
|
simpr |
|
133 |
3
|
fvmpt2 |
|
134 |
132 89 133
|
syl2anc |
|
135 |
1
|
fvmpt2 |
|
136 |
132 4 135
|
syl2anc |
|
137 |
136
|
eqcomd |
|
138 |
2
|
fvmpt2 |
|
139 |
132 5 138
|
syl2anc |
|
140 |
139
|
eqcomd |
|
141 |
137 140
|
oveq12d |
|
142 |
134 141
|
eqtrd |
|
143 |
123 131 142
|
chvarfv |
|
144 |
143
|
ad3antrrr |
|
145 |
144
|
oveq1d |
|
146 |
98 103 99 104
|
addsub4d |
|
147 |
145 146
|
eqtrd |
|
148 |
147
|
fveq2d |
|
149 |
100 105
|
abstrid |
|
150 |
148 149
|
eqbrtrd |
|
151 |
|
simplr |
|
152 |
|
simpr |
|
153 |
101 106 108 151 152
|
lt2halvesd |
|
154 |
96 107 108 150 153
|
lelttrd |
|
155 |
77 88 154
|
syl2anc |
|
156 |
155
|
3exp |
|
157 |
45 156
|
ralrimi |
|
158 |
|
brimralrspcev |
|
159 |
39 157 158
|
syl2anc |
|
160 |
159
|
3exp |
|
161 |
160
|
rexlimdvv |
|
162 |
37 161
|
mpd |
|
163 |
162
|
ralrimiva |
|
164 |
90 14 17
|
ellimc3 |
|
165 |
12 163 164
|
mpbir2and |
|