Metamath Proof Explorer


Theorem addlsub

Description: Left-subtraction: Subtraction of the left summand from the result of an addition. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses addlsub.a φ A
addlsub.b φ B
addlsub.c φ C
Assertion addlsub φ A + B = C A = C B

Proof

Step Hyp Ref Expression
1 addlsub.a φ A
2 addlsub.b φ B
3 addlsub.c φ C
4 oveq1 A + B = C A + B - B = C B
5 1 2 pncand φ A + B - B = A
6 eqtr2 A + B - B = C B A + B - B = A C B = A
7 6 eqcomd A + B - B = C B A + B - B = A A = C B
8 7 a1i φ A + B - B = C B A + B - B = A A = C B
9 5 8 mpan2d φ A + B - B = C B A = C B
10 4 9 syl5 φ A + B = C A = C B
11 oveq1 A = C B A + B = C - B + B
12 3 2 npcand φ C - B + B = C
13 eqtr A + B = C - B + B C - B + B = C A + B = C
14 13 a1i φ A + B = C - B + B C - B + B = C A + B = C
15 12 14 mpan2d φ A + B = C - B + B A + B = C
16 11 15 syl5 φ A = C B A + B = C
17 10 16 impbid φ A + B = C A = C B