Metamath Proof Explorer


Theorem addn0nid

Description: Adding a nonzero number to a complex number does not yield the complex number. (Contributed by AV, 17-Jan-2021)

Ref Expression
Assertion addn0nid X Y Y 0 X + Y X

Proof

Step Hyp Ref Expression
1 addid0 X Y X + Y = X Y = 0
2 1 biimpd X Y X + Y = X Y = 0
3 2 necon3d X Y Y 0 X + Y X
4 3 3impia X Y Y 0 X + Y X