Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Initial properties of the complex numbers
addneintr2d
Metamath Proof Explorer
Description: Introducing a term on the right-hand side of a sum in a negated
equality. Contrapositive of addcan2ad . Consequence of
addcan2d . (Contributed by David Moews , 28-Feb-2017)
Ref
Expression
Hypotheses
muld.1
⊢ φ → A ∈ ℂ
addcomd.2
⊢ φ → B ∈ ℂ
addcand.3
⊢ φ → C ∈ ℂ
addneintr2d.4
⊢ φ → A ≠ B
Assertion
addneintr2d
⊢ φ → A + C ≠ B + C
Proof
Step
Hyp
Ref
Expression
1
muld.1
⊢ φ → A ∈ ℂ
2
addcomd.2
⊢ φ → B ∈ ℂ
3
addcand.3
⊢ φ → C ∈ ℂ
4
addneintr2d.4
⊢ φ → A ≠ B
5
1 2 3
addcan2d
⊢ φ → A + C = B + C ↔ A = B
6
5
necon3bid
⊢ φ → A + C ≠ B + C ↔ A ≠ B
7
4 6
mpbird
⊢ φ → A + C ≠ B + C