Metamath Proof Explorer


Theorem addneintr2d

Description: Introducing a term on the right-hand side of a sum in a negated equality. Contrapositive of addcan2ad . Consequence of addcan2d . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses muld.1 φ A
addcomd.2 φ B
addcand.3 φ C
addneintr2d.4 φ A B
Assertion addneintr2d φ A + C B + C

Proof

Step Hyp Ref Expression
1 muld.1 φ A
2 addcomd.2 φ B
3 addcand.3 φ C
4 addneintr2d.4 φ A B
5 1 2 3 addcan2d φ A + C = B + C A = B
6 5 necon3bid φ A + C B + C A B
7 4 6 mpbird φ A + C B + C