Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Initial properties of the complex numbers
addneintrd
Metamath Proof Explorer
Description: Introducing a term on the left-hand side of a sum in a negated
equality. Contrapositive of addcanad . Consequence of addcand .
(Contributed by David Moews , 28-Feb-2017)
Ref
Expression
Hypotheses
muld.1
⊢ φ → A ∈ ℂ
addcomd.2
⊢ φ → B ∈ ℂ
addcand.3
⊢ φ → C ∈ ℂ
addneintrd.4
⊢ φ → B ≠ C
Assertion
addneintrd
⊢ φ → A + B ≠ A + C
Proof
Step
Hyp
Ref
Expression
1
muld.1
⊢ φ → A ∈ ℂ
2
addcomd.2
⊢ φ → B ∈ ℂ
3
addcand.3
⊢ φ → C ∈ ℂ
4
addneintrd.4
⊢ φ → B ≠ C
5
1 2 3
addcand
⊢ φ → A + B = A + C ↔ B = C
6
5
necon3bid
⊢ φ → A + B ≠ A + C ↔ B ≠ C
7
4 6
mpbird
⊢ φ → A + B ≠ A + C