Metamath Proof Explorer


Theorem addneintrd

Description: Introducing a term on the left-hand side of a sum in a negated equality. Contrapositive of addcanad . Consequence of addcand . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses muld.1 φ A
addcomd.2 φ B
addcand.3 φ C
addneintrd.4 φ B C
Assertion addneintrd φ A + B A + C

Proof

Step Hyp Ref Expression
1 muld.1 φ A
2 addcomd.2 φ B
3 addcand.3 φ C
4 addneintrd.4 φ B C
5 1 2 3 addcand φ A + B = A + C B = C
6 5 necon3bid φ A + B A + C B C
7 4 6 mpbird φ A + B A + C