Database REAL AND COMPLEX NUMBERS Derive the basic properties from the field axioms Initial properties of the complex numbers addneintrd  
				
		 
		
			
		 
		Description:   Introducing a term on the left-hand side of a sum in a negated
         equality.  Contrapositive of addcanad  .  Consequence of addcand  .
         (Contributed by David Moews , 28-Feb-2017) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						muld.1    ⊢   φ   →   A  ∈   ℂ          
					 
					
						addcomd.2    ⊢   φ   →   B  ∈   ℂ          
					 
					
						addcand.3    ⊢   φ   →   C  ∈   ℂ          
					 
					
						addneintrd.4    ⊢   φ   →   B  ≠  C         
					 
				
					Assertion 
					addneintrd    ⊢   φ   →   A  +  B ≠  A  +  C        
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							muld.1   ⊢   φ   →   A  ∈   ℂ          
						
							2 
								
							 
							addcomd.2   ⊢   φ   →   B  ∈   ℂ          
						
							3 
								
							 
							addcand.3   ⊢   φ   →   C  ∈   ℂ          
						
							4 
								
							 
							addneintrd.4   ⊢   φ   →   B  ≠  C         
						
							5 
								1  2  3 
							 
							addcand   ⊢   φ   →    A  +  B =  A  +  C   ↔   B  =  C          
						
							6 
								5 
							 
							necon3bid   ⊢   φ   →    A  +  B ≠  A  +  C   ↔   B  ≠  C          
						
							7 
								4  6 
							 
							mpbird   ⊢   φ   →   A  +  B ≠  A  +  C