Metamath Proof Explorer


Theorem addnidpi

Description: There is no identity element for addition on positive integers. (Contributed by NM, 28-Nov-1995) (New usage is discouraged.)

Ref Expression
Assertion addnidpi A 𝑵 ¬ A + 𝑵 B = A

Proof

Step Hyp Ref Expression
1 pinn A 𝑵 A ω
2 elni2 B 𝑵 B ω B
3 nnaordi B ω A ω B A + 𝑜 A + 𝑜 B
4 nna0 A ω A + 𝑜 = A
5 4 eleq1d A ω A + 𝑜 A + 𝑜 B A A + 𝑜 B
6 nnord A ω Ord A
7 ordirr Ord A ¬ A A
8 6 7 syl A ω ¬ A A
9 eleq2 A + 𝑜 B = A A A + 𝑜 B A A
10 9 notbid A + 𝑜 B = A ¬ A A + 𝑜 B ¬ A A
11 8 10 syl5ibrcom A ω A + 𝑜 B = A ¬ A A + 𝑜 B
12 11 con2d A ω A A + 𝑜 B ¬ A + 𝑜 B = A
13 5 12 sylbid A ω A + 𝑜 A + 𝑜 B ¬ A + 𝑜 B = A
14 13 adantl B ω A ω A + 𝑜 A + 𝑜 B ¬ A + 𝑜 B = A
15 3 14 syld B ω A ω B ¬ A + 𝑜 B = A
16 15 expcom A ω B ω B ¬ A + 𝑜 B = A
17 16 imp32 A ω B ω B ¬ A + 𝑜 B = A
18 2 17 sylan2b A ω B 𝑵 ¬ A + 𝑜 B = A
19 1 18 sylan A 𝑵 B 𝑵 ¬ A + 𝑜 B = A
20 addpiord A 𝑵 B 𝑵 A + 𝑵 B = A + 𝑜 B
21 20 eqeq1d A 𝑵 B 𝑵 A + 𝑵 B = A A + 𝑜 B = A
22 19 21 mtbird A 𝑵 B 𝑵 ¬ A + 𝑵 B = A
23 22 a1d A 𝑵 B 𝑵 A 𝑵 ¬ A + 𝑵 B = A
24 dmaddpi dom + 𝑵 = 𝑵 × 𝑵
25 24 ndmov ¬ A 𝑵 B 𝑵 A + 𝑵 B =
26 25 eqeq1d ¬ A 𝑵 B 𝑵 A + 𝑵 B = A = A
27 0npi ¬ 𝑵
28 eleq1 = A 𝑵 A 𝑵
29 27 28 mtbii = A ¬ A 𝑵
30 26 29 syl6bi ¬ A 𝑵 B 𝑵 A + 𝑵 B = A ¬ A 𝑵
31 30 con2d ¬ A 𝑵 B 𝑵 A 𝑵 ¬ A + 𝑵 B = A
32 23 31 pm2.61i A 𝑵 ¬ A + 𝑵 B = A