Metamath Proof Explorer


Theorem addpipq

Description: Addition of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013) (New usage is discouraged.)

Ref Expression
Assertion addpipq A 𝑵 B 𝑵 C 𝑵 D 𝑵 A B + 𝑝𝑸 C D = A 𝑵 D + 𝑵 C 𝑵 B B 𝑵 D

Proof

Step Hyp Ref Expression
1 opelxpi A 𝑵 B 𝑵 A B 𝑵 × 𝑵
2 opelxpi C 𝑵 D 𝑵 C D 𝑵 × 𝑵
3 addpipq2 A B 𝑵 × 𝑵 C D 𝑵 × 𝑵 A B + 𝑝𝑸 C D = 1 st A B 𝑵 2 nd C D + 𝑵 1 st C D 𝑵 2 nd A B 2 nd A B 𝑵 2 nd C D
4 1 2 3 syl2an A 𝑵 B 𝑵 C 𝑵 D 𝑵 A B + 𝑝𝑸 C D = 1 st A B 𝑵 2 nd C D + 𝑵 1 st C D 𝑵 2 nd A B 2 nd A B 𝑵 2 nd C D
5 op1stg A 𝑵 B 𝑵 1 st A B = A
6 op2ndg C 𝑵 D 𝑵 2 nd C D = D
7 5 6 oveqan12d A 𝑵 B 𝑵 C 𝑵 D 𝑵 1 st A B 𝑵 2 nd C D = A 𝑵 D
8 op1stg C 𝑵 D 𝑵 1 st C D = C
9 op2ndg A 𝑵 B 𝑵 2 nd A B = B
10 8 9 oveqan12rd A 𝑵 B 𝑵 C 𝑵 D 𝑵 1 st C D 𝑵 2 nd A B = C 𝑵 B
11 7 10 oveq12d A 𝑵 B 𝑵 C 𝑵 D 𝑵 1 st A B 𝑵 2 nd C D + 𝑵 1 st C D 𝑵 2 nd A B = A 𝑵 D + 𝑵 C 𝑵 B
12 9 6 oveqan12d A 𝑵 B 𝑵 C 𝑵 D 𝑵 2 nd A B 𝑵 2 nd C D = B 𝑵 D
13 11 12 opeq12d A 𝑵 B 𝑵 C 𝑵 D 𝑵 1 st A B 𝑵 2 nd C D + 𝑵 1 st C D 𝑵 2 nd A B 2 nd A B 𝑵 2 nd C D = A 𝑵 D + 𝑵 C 𝑵 B B 𝑵 D
14 4 13 eqtrd A 𝑵 B 𝑵 C 𝑵 D 𝑵 A B + 𝑝𝑸 C D = A 𝑵 D + 𝑵 C 𝑵 B B 𝑵 D