Metamath Proof Explorer


Theorem addrsub

Description: Right-subtraction: Subtraction of the right summand from the result of an addition. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses addlsub.a φ A
addlsub.b φ B
addlsub.c φ C
Assertion addrsub φ A + B = C B = C A

Proof

Step Hyp Ref Expression
1 addlsub.a φ A
2 addlsub.b φ B
3 addlsub.c φ C
4 1 2 addcomd φ A + B = B + A
5 4 eqeq1d φ A + B = C B + A = C
6 2 1 3 addlsub φ B + A = C B = C A
7 5 6 bitrd φ A + B = C B = C A