Step |
Hyp |
Ref |
Expression |
1 |
|
addsasslem.1 |
|
2 |
|
addsasslem.2 |
|
3 |
|
addsasslem.3 |
|
4 |
1 2
|
addscut |
|
5 |
4
|
simp2d |
|
6 |
4
|
simp3d |
|
7 |
|
ovex |
|
8 |
7
|
snnz |
|
9 |
|
sslttr |
|
10 |
8 9
|
mp3an3 |
|
11 |
5 6 10
|
syl2anc |
|
12 |
|
lltropt |
|
13 |
12
|
a1i |
|
14 |
|
addsval2 |
|
15 |
1 2 14
|
syl2anc |
|
16 |
|
lrcut |
|
17 |
3 16
|
syl |
|
18 |
17
|
eqcomd |
|
19 |
11 13 15 18
|
addsunif |
|
20 |
|
unab |
|
21 |
|
eqeq1 |
|
22 |
21
|
rexbidv |
|
23 |
22
|
cbvabv |
|
24 |
23
|
uneq2i |
|
25 |
|
rexun |
|
26 |
|
eqeq1 |
|
27 |
26
|
rexbidv |
|
28 |
27
|
rexab |
|
29 |
|
rexcom4 |
|
30 |
|
ovex |
|
31 |
|
oveq1 |
|
32 |
31
|
eqeq2d |
|
33 |
30 32
|
ceqsexv |
|
34 |
33
|
rexbii |
|
35 |
|
r19.41v |
|
36 |
35
|
exbii |
|
37 |
29 34 36
|
3bitr3ri |
|
38 |
28 37
|
bitri |
|
39 |
|
eqeq1 |
|
40 |
39
|
rexbidv |
|
41 |
40
|
rexab |
|
42 |
|
rexcom4 |
|
43 |
|
ovex |
|
44 |
|
oveq1 |
|
45 |
44
|
eqeq2d |
|
46 |
43 45
|
ceqsexv |
|
47 |
46
|
rexbii |
|
48 |
|
r19.41v |
|
49 |
48
|
exbii |
|
50 |
42 47 49
|
3bitr3ri |
|
51 |
41 50
|
bitri |
|
52 |
38 51
|
orbi12i |
|
53 |
25 52
|
bitri |
|
54 |
53
|
abbii |
|
55 |
20 24 54
|
3eqtr4ri |
|
56 |
55
|
uneq1i |
|
57 |
|
unab |
|
58 |
|
eqeq1 |
|
59 |
58
|
rexbidv |
|
60 |
59
|
cbvabv |
|
61 |
60
|
uneq2i |
|
62 |
|
rexun |
|
63 |
|
eqeq1 |
|
64 |
63
|
rexbidv |
|
65 |
64
|
rexab |
|
66 |
|
rexcom4 |
|
67 |
|
ovex |
|
68 |
|
oveq1 |
|
69 |
68
|
eqeq2d |
|
70 |
67 69
|
ceqsexv |
|
71 |
70
|
rexbii |
|
72 |
|
r19.41v |
|
73 |
72
|
exbii |
|
74 |
66 71 73
|
3bitr3ri |
|
75 |
65 74
|
bitri |
|
76 |
|
eqeq1 |
|
77 |
76
|
rexbidv |
|
78 |
77
|
rexab |
|
79 |
|
rexcom4 |
|
80 |
|
ovex |
|
81 |
|
oveq1 |
|
82 |
81
|
eqeq2d |
|
83 |
80 82
|
ceqsexv |
|
84 |
83
|
rexbii |
|
85 |
|
r19.41v |
|
86 |
85
|
exbii |
|
87 |
79 84 86
|
3bitr3ri |
|
88 |
78 87
|
bitri |
|
89 |
75 88
|
orbi12i |
|
90 |
62 89
|
bitri |
|
91 |
90
|
abbii |
|
92 |
57 61 91
|
3eqtr4ri |
|
93 |
92
|
uneq1i |
|
94 |
56 93
|
oveq12i |
|
95 |
19 94
|
eqtrdi |
|