Metamath Proof Explorer


Theorem addscan1

Description: Cancellation law for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion addscan1 A No B No C No C + s A = C + s B A = B

Proof

Step Hyp Ref Expression
1 addscom A No C No A + s C = C + s A
2 1 3adant2 A No B No C No A + s C = C + s A
3 addscom B No C No B + s C = C + s B
4 3 3adant1 A No B No C No B + s C = C + s B
5 2 4 eqeq12d A No B No C No A + s C = B + s C C + s A = C + s B
6 addscan2 A No B No C No A + s C = B + s C A = B
7 5 6 bitr3d A No B No C No C + s A = C + s B A = B