Metamath Proof Explorer


Theorem addscan2

Description: Cancellation law for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion addscan2 A No B No C No A + s C = B + s C A = B

Proof

Step Hyp Ref Expression
1 sleadd1 A No B No C No A s B A + s C s B + s C
2 sleadd1 B No A No C No B s A B + s C s A + s C
3 2 3com12 A No B No C No B s A B + s C s A + s C
4 1 3 anbi12d A No B No C No A s B B s A A + s C s B + s C B + s C s A + s C
5 sletri3 A No B No A = B A s B B s A
6 5 3adant3 A No B No C No A = B A s B B s A
7 addscl A No C No A + s C No
8 7 3adant2 A No B No C No A + s C No
9 addscl B No C No B + s C No
10 9 3adant1 A No B No C No B + s C No
11 sletri3 A + s C No B + s C No A + s C = B + s C A + s C s B + s C B + s C s A + s C
12 8 10 11 syl2anc A No B No C No A + s C = B + s C A + s C s B + s C B + s C s A + s C
13 4 6 12 3bitr4rd A No B No C No A + s C = B + s C A = B