Database
SURREAL NUMBERS
Surreal arithmetic
Addition
addscan2
Next ⟩
addscan1
Metamath Proof Explorer
Ascii
Unicode
Theorem
addscan2
Description:
Cancellation law for surreal addition.
(Contributed by
Scott Fenton
, 21-Jan-2025)
Ref
Expression
Assertion
addscan2
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
+
s
C
=
B
+
s
C
↔
A
=
B
Proof
Step
Hyp
Ref
Expression
1
sleadd1
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
≤
s
B
↔
A
+
s
C
≤
s
B
+
s
C
2
sleadd1
⊢
B
∈
No
∧
A
∈
No
∧
C
∈
No
→
B
≤
s
A
↔
B
+
s
C
≤
s
A
+
s
C
3
2
3com12
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
B
≤
s
A
↔
B
+
s
C
≤
s
A
+
s
C
4
1
3
anbi12d
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
≤
s
B
∧
B
≤
s
A
↔
A
+
s
C
≤
s
B
+
s
C
∧
B
+
s
C
≤
s
A
+
s
C
5
sletri3
⊢
A
∈
No
∧
B
∈
No
→
A
=
B
↔
A
≤
s
B
∧
B
≤
s
A
6
5
3adant3
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
=
B
↔
A
≤
s
B
∧
B
≤
s
A
7
addscl
⊢
A
∈
No
∧
C
∈
No
→
A
+
s
C
∈
No
8
7
3adant2
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
+
s
C
∈
No
9
addscl
⊢
B
∈
No
∧
C
∈
No
→
B
+
s
C
∈
No
10
9
3adant1
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
B
+
s
C
∈
No
11
sletri3
⊢
A
+
s
C
∈
No
∧
B
+
s
C
∈
No
→
A
+
s
C
=
B
+
s
C
↔
A
+
s
C
≤
s
B
+
s
C
∧
B
+
s
C
≤
s
A
+
s
C
12
8
10
11
syl2anc
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
+
s
C
=
B
+
s
C
↔
A
+
s
C
≤
s
B
+
s
C
∧
B
+
s
C
≤
s
A
+
s
C
13
4
6
12
3bitr4rd
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
+
s
C
=
B
+
s
C
↔
A
=
B