Metamath Proof Explorer


Theorem addscomd

Description: Surreal addition commutes. Part of Theorem 3 of Conway p. 17. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Hypotheses addscomd.1 φ A No
addscomd.2 φ B No
Assertion addscomd φ A + s B = B + s A

Proof

Step Hyp Ref Expression
1 addscomd.1 φ A No
2 addscomd.2 φ B No
3 addscom A No B No A + s B = B + s A
4 1 2 3 syl2anc φ A + s B = B + s A