Database
SURREAL NUMBERS
Surreal arithmetic
Addition
addscomd
Metamath Proof Explorer
Description: Surreal addition commutes. Part of Theorem 3 of Conway p. 17.
(Contributed by Scott Fenton , 20-Aug-2024)
Ref
Expression
Hypotheses
addscomd.1
⊢ φ → A ∈ No
addscomd.2
⊢ φ → B ∈ No
Assertion
addscomd
Could not format assertion : No typesetting found for |- ( ph -> ( A +s B ) = ( B +s A ) ) with typecode |-
Proof
Step
Hyp
Ref
Expression
1
addscomd.1
⊢ φ → A ∈ No
2
addscomd.2
⊢ φ → B ∈ No
3
addscom
Could not format ( ( A e. No /\ B e. No ) -> ( A +s B ) = ( B +s A ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( A +s B ) = ( B +s A ) ) with typecode |-
4
1 2 3
syl2anc
Could not format ( ph -> ( A +s B ) = ( B +s A ) ) : No typesetting found for |- ( ph -> ( A +s B ) = ( B +s A ) ) with typecode |-