Step |
Hyp |
Ref |
Expression |
1 |
|
addscut.1 |
|
2 |
|
addscut.2 |
|
3 |
1 2
|
addscutlem |
|
4 |
|
biid |
|
5 |
|
oveq1 |
|
6 |
5
|
eqeq2d |
|
7 |
6
|
cbvrexvw |
|
8 |
|
eqeq1 |
|
9 |
8
|
rexbidv |
|
10 |
7 9
|
bitrid |
|
11 |
10
|
cbvabv |
|
12 |
|
oveq2 |
|
13 |
12
|
eqeq2d |
|
14 |
13
|
cbvrexvw |
|
15 |
|
eqeq1 |
|
16 |
15
|
rexbidv |
|
17 |
14 16
|
bitrid |
|
18 |
17
|
cbvabv |
|
19 |
11 18
|
uneq12i |
|
20 |
19
|
breq1i |
|
21 |
|
oveq1 |
|
22 |
21
|
eqeq2d |
|
23 |
22
|
cbvrexvw |
|
24 |
|
eqeq1 |
|
25 |
24
|
rexbidv |
|
26 |
23 25
|
bitrid |
|
27 |
26
|
cbvabv |
|
28 |
|
oveq2 |
|
29 |
28
|
eqeq2d |
|
30 |
29
|
cbvrexvw |
|
31 |
|
eqeq1 |
|
32 |
31
|
rexbidv |
|
33 |
30 32
|
bitrid |
|
34 |
33
|
cbvabv |
|
35 |
27 34
|
uneq12i |
|
36 |
35
|
breq2i |
|
37 |
4 20 36
|
3anbi123i |
|
38 |
3 37
|
sylibr |
|