Metamath Proof Explorer


Theorem addscut

Description: Demonstrate the cut properties of surreal addition. This gives us closure together with a pair of set-less-than relationships for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Hypotheses addscut.1 φ X No
addscut.2 φ Y No
Assertion addscut φ X + s Y No p | l L X p = l + s Y q | m L Y q = X + s m s X + s Y X + s Y s w | r R X w = r + s Y t | s R Y t = X + s s

Proof

Step Hyp Ref Expression
1 addscut.1 φ X No
2 addscut.2 φ Y No
3 1 2 addscutlem φ X + s Y No a | b L X a = b + s Y c | d L Y c = X + s d s X + s Y X + s Y s e | f R X e = f + s Y g | h R Y g = X + s h
4 biid X + s Y No X + s Y No
5 oveq1 l = b l + s Y = b + s Y
6 5 eqeq2d l = b p = l + s Y p = b + s Y
7 6 cbvrexvw l L X p = l + s Y b L X p = b + s Y
8 eqeq1 p = a p = b + s Y a = b + s Y
9 8 rexbidv p = a b L X p = b + s Y b L X a = b + s Y
10 7 9 bitrid p = a l L X p = l + s Y b L X a = b + s Y
11 10 cbvabv p | l L X p = l + s Y = a | b L X a = b + s Y
12 oveq2 m = d X + s m = X + s d
13 12 eqeq2d m = d q = X + s m q = X + s d
14 13 cbvrexvw m L Y q = X + s m d L Y q = X + s d
15 eqeq1 q = c q = X + s d c = X + s d
16 15 rexbidv q = c d L Y q = X + s d d L Y c = X + s d
17 14 16 bitrid q = c m L Y q = X + s m d L Y c = X + s d
18 17 cbvabv q | m L Y q = X + s m = c | d L Y c = X + s d
19 11 18 uneq12i p | l L X p = l + s Y q | m L Y q = X + s m = a | b L X a = b + s Y c | d L Y c = X + s d
20 19 breq1i p | l L X p = l + s Y q | m L Y q = X + s m s X + s Y a | b L X a = b + s Y c | d L Y c = X + s d s X + s Y
21 oveq1 r = f r + s Y = f + s Y
22 21 eqeq2d r = f w = r + s Y w = f + s Y
23 22 cbvrexvw r R X w = r + s Y f R X w = f + s Y
24 eqeq1 w = e w = f + s Y e = f + s Y
25 24 rexbidv w = e f R X w = f + s Y f R X e = f + s Y
26 23 25 bitrid w = e r R X w = r + s Y f R X e = f + s Y
27 26 cbvabv w | r R X w = r + s Y = e | f R X e = f + s Y
28 oveq2 s = h X + s s = X + s h
29 28 eqeq2d s = h t = X + s s t = X + s h
30 29 cbvrexvw s R Y t = X + s s h R Y t = X + s h
31 eqeq1 t = g t = X + s h g = X + s h
32 31 rexbidv t = g h R Y t = X + s h h R Y g = X + s h
33 30 32 bitrid t = g s R Y t = X + s s h R Y g = X + s h
34 33 cbvabv t | s R Y t = X + s s = g | h R Y g = X + s h
35 27 34 uneq12i w | r R X w = r + s Y t | s R Y t = X + s s = e | f R X e = f + s Y g | h R Y g = X + s h
36 35 breq2i X + s Y s w | r R X w = r + s Y t | s R Y t = X + s s X + s Y s e | f R X e = f + s Y g | h R Y g = X + s h
37 4 20 36 3anbi123i X + s Y No p | l L X p = l + s Y q | m L Y q = X + s m s X + s Y X + s Y s w | r R X w = r + s Y t | s R Y t = X + s s X + s Y No a | b L X a = b + s Y c | d L Y c = X + s d s X + s Y X + s Y s e | f R X e = f + s Y g | h R Y g = X + s h
38 3 37 sylibr φ X + s Y No p | l L X p = l + s Y q | m L Y q = X + s m s X + s Y X + s Y s w | r R X w = r + s Y t | s R Y t = X + s s